George Rickey

Three Lines

I’d already started making these slender pointed shapes that could move through an arc as easily as possible. I’d done them small, indoors, and I thought, well I can do it indoors, let me see if I can do it larger and outdoors, and I had to alter the construction because of the outdoor wind forces. So the small ones, the small indoor line pieces, had made by taking just a tapered strip of steel and simply folding it about 60 degrees, and that makes it stiff and narrower. I knew that wouldn’t do for outdoors, because it is only two sided, that is not strong enough. It had to have a third side. So I did the obvious thing which was to make a long, tapered form with three tapered sections that were welded together along the edges. And first I tried with two, I didn’t try just with one. I wanted some kind of dialogue, some kind of opposition, contrast. The first piece, even the small ones, I made either with two or with several blades. Well, if you make with two, then you have to try what three will do. And there is the tremendous difference between a dialogue, and only two, and as soon as you get a third, it becomes a conversation. And of course there is an old saying, isn’t there? That two’s company, and three’s a crowd. That difference, you know it’s long been recognized. The difference between two active components and three.
George Rickey
The Role of Nature in His Work
I use nature, that is the force of gravity, obviously, and with the elementary laws of physics having to do with a balance that also is in nature. The wind offers me the energy, the force to make them move. Light is very important on these, this also is nature. Now I don’t interpret nature, but I employ it. So that is a relationship that is a bit different from a lot of so-called, “painting after nature” or figurative painting and so on. I think that nature is certainly a component, and a central component of what I do, and I think part of what I recognize and exploit is what nature can do for me.

George Rickey
Physics and Engineering
The laws of nature that I am forced to obey and to employ they are what one learns in high school physics, and I think I learned those in high school physics, forgot a lot of them, and had to re-remember, you see, when they became important to me. For example, all of these are functionally pendulums. You see a hinged swinging rod with a weight at the bottom, and the rules that cover the pendulum cover what I do. Well, that’s not engineering, you see, that’s very elementary physics. I’ve had to in a way, rediscover some of my physics, I suppose the hard way. Even the physics as a transmission of heat. See, I learned in physics that different metals transfer heat differently and silver and copper transfer it very fast, and iron transfers it much more slowly, wood scarcely transfers it at all. And I’ve learned that I can heat one end of the stainless steel rod, and pick up the other end, but not of a silver rod. It will burn me! And it’s quite amusing in a way to have this practical experience confirming what I learned in school seventy years ago. But I know from observation that just reading some of the things that are known by engineers, the strength of materials, certain shapes bend easily, certain other shapes resist it. I know for example that if you have a flat sheet, it’s wobbly, and as soon as you put a fold in that sheet it’s stiff, and if you put two folds in its much stiffer. And if you put four folds in and have a box, it is a very strong beam. I know these things, but I didn’t have to go to engineering school to learn those. I think that I learned them by observation and in a way had them confirmed by engineers.

Phillip Rickey, the artist’s son
Stainless Steel
When he discovered stainless steel in the early 50’s, he liked the fact that it didn’t have color, but a sort of clean quality. Maybe the industrial quality of the material appealed to him because it did not need to be coated to go outside. It was not fully impervious, but it was a very strong and durable material. But he also liked what happened to the stainless steel when it was given a surface. So it comes to you as this gray material, sheet metal, and then he would grind it in a random way with an 8” 80-grit grinding wheel in a pattern that was random. He wasn’t drawing with the grinder. He wanted an all-over surface that could reflect light and the clouds, or blue sky, the gray, the different atmospheric qualities that were surrounding him. And the movement of the light as reflected in the sculptural surface became very important for him and for his artwork. The work is about movement, but it’s about
the movement of the light, shadow, color, or colorless overcast kind of day that’s surrounding it. He liked the fact that the surface reflected the atmosphere, the environment in which it was placed.

Phillip Rickey, the artist’s son

Movement in the Work

Without question, his biggest contribution to art would be his development of “movement as a means” is what he called it, of giving focus and breadth to an idea that was really given form by Alexander Calder in the 30’s in Paris. And out of that, he started to develop a language. So he started where Calder was with the mobiles and rather quickly he started to realize that movement, the idea of movement as a palette, had a lot of opportunity and as he put it, Calder had not opened all the doors so there was room for him to start to open and explore other ways of working with movement and developing movement as the focus of the artistic expression. He did not sort of take the idea of movement and explore it further to see if one chooses only movement, what could happen? And that’s what my father decided to do. First his early work was an exploration, starting to investigate how to develop a vocabulary that is movement so he had to create color, value, light and dark, line..... All of those things that are present in painting, which he had come from, or in a different way in sculpture, form, and volume versus something that is open. He started to explore, What am I going to do with movement? This open question.

Mystery Family Tour

You are looking at sculpture by George Rickey called *Three Lines*. Listen and look carefully to figure out how this sculpture moves. When you look at this sculpture, what do you see? Did you see this piece move? Look carefully because some days it moves fast and other days it moves very slowly. How do you think this piece moves? Hint: How would weather affect this piece? George and his artist friend, Alexander Calder, are well-known for introducing kinetic sculpture to America. Kinetic sculpture is sculpture that moves. Influenced by work he did in a machine shop, George used his background to build kinetic sculptures. George often started his art by making a sketch of what he wanted the piece to look like. He would create a small version of the sculpture called a maquette. Then George would build a large-scale sculpture like the one you are looking at. He would leave the piece outdoors for several months, and watch it to be sure it worked in all weather conditions. Let’s have some fun! Make your body move the way the sculpture would move on a windy day, during a hurricane, and on a quiet day. Do you remember what kinetic means? Have you seen any other kinetic sculptures at deCordova? Try and find some!